Ordering Extremes of Interdependent Random Variables

نویسندگان

  • Rui Fang
  • Xiaohu Li
چکیده

For random variables with Archimedean copula or survival copula, we develop the reversed hazard rate order and the hazard rate order on sample extremes in the context of proportional reversed hazard models and proportional hazard models, respectively. The likelihood ratio order on sample maximum is also investigated for the proportional reversed hazard model. Several numerical examples are presented for illustrations as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive Ordering and k-out-of-n Systems

Extended Abstract. The simplest and the most common way of comparing two random variables is through their means and variances. It may happen that in some cases the median of X is larger than that of Y, while the mean of X is smaller than the mean of Y. However, this confusion will not arise if the random variables are stochastically ordered. Similarly, the same may happen if one would like to ...

متن کامل

Estimation of Robustness of Interdependent Networks against Node Failures

We consider a partially interdependent network and develop mathematical equations relating the fractional size of the connected component of the network surviving the cascading failure to the intra-layer degree distribution of the nodes. We show that these system equations can be mathematically analyzed and closed form expressions for the metrics of robustness can be obtained for the Erdos-Reny...

متن کامل

Ordering of Order Statistics Using Variance Majorization

 In this paper, we study stochastic comparisons of order statistics of independent random variables with proportional hazard rates, using the notion of variance majorization.

متن کامل

Bounds for CDFs of Order Statistics Arising from INID Random Variables

In recent decades, studying order statistics arising from independent and not necessary identically distributed (INID) random variables has been a main concern for researchers. A cumulative distribution function (CDF) of these random variables (Fi:n) is a complex manipulating, long time consuming and a software-intensive tool that takes more and more times. Therefore, obtaining approximations a...

متن کامل

Beyond Correlation: Measuring Interdependence Through Complementarities

Given two sets of random variables, how can one determine whether the former variables are more interdependent than the latter? This question is of major importance to economists, for example, in comparing how various policies affect systemic risk or income inequality. Moreover, correlation is ill-suited to this task as it is typically not justified by any economic objective. Economists’ intere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017